BEAST v2.7.8 Documentation: beast.base.evolution.operator.kernel.AdaptableVarianceMultivariateNormalOperator

Proposes a move in state space.
Operator with a flexible kernel distribution
Operator that moves many parameters (possibly, after transformation to make them more normally distributed). It learns the correlation structure among these parameters during the MCMC run and updates parameters accordingly. doi:10.1093/bioinformatics/btx088

Inputs:

transformations, scaleFactor, coefficient, beta, initial, burnin, every, optimise, store, allowNonsense, kernelDistribution, weight

 

transformations
type: beast.base.inference.operator.kernel.Transform***
one or more transformed parameters to be moved. For scale parameters use LogTransform (where e.g. scale operators were used). For location parameter use NoTransform (where e.g. random walk operators were used). For parameters that sum to a constant use LogConstrainedSumTransform (where e.g. delta-exchange operators were used).
Optional input

 

scaleFactor
type: java.lang.Double
start scaling factor, larger values give bolder moves (this is tuned during the run)
Optional input. Default: 1.0

 

coefficient
type: java.lang.Double
determines diagonal correlation for variance matrix
Optional input. Default: 1.0

 

beta
type: java.lang.Double
fraction of proposal determined by non-covariance matrix
Optional input

 

initial
type: java.lang.Integer
Number of proposals before covariance matrix is considered in proposal. Must be larger than burnin, if specified. If not specified (or < 0), the operator uses 200 * parameter dimension
Optional input. Default: -1

 

burnin
type: java.lang.Integer
Number of proposals that are ignored before covariance matrix is being updated. If initial is not specified, uses half the default initial value (which equals 100 * parameter dimension)
Optional input. Default: 0

 

every
type: java.lang.Integer
update interval for covariance matrix, default 1 (that is, every step)
Optional input. Default: 1

 

optimise
type: java.lang.Boolean
flag to indicate that the scale factor is automatically changed in order to achieve a good acceptance rate (default true)
Optional input. Default: true

 

store
type: java.lang.Boolean
flag to indicate if covariance and mean should be stored to the state file (default true)
Optional input. Default: true

 

allowNonsense
type: java.lang.Boolean
flag to indicate if transforms may accept nonsensical inputs eg. 0 parameters (default false)
Optional input. Default: false

 

kernelDistribution
type: beast.base.inference.operator.kernel.KernelDistribution
provides sample distribution for proposals
Optional input

 

weight
type: java.lang.Double
weight with which this operator is selected
Required input