BEAST v2.7.8 Documentation: beastlabs.evolution.likelihood.SelfTuningMCMC

Entry point for running a Beast task, for instance an MCMC or other probabilistic analysis, a simulation, etc.
MCMC chain. This is the main element that controls which posterior to calculate, how long to run the chain and all other properties, which operators to apply on the state space and where to log results.
MCMC that can tune the treelikelihood for efficiency

Reference:

Bouckaert, Remco, Timothy G. Vaughan, Joëlle Barido-Sottani, Sebastián Duchêne, Mathieu Fourment, Alexandra Gavryushkina, Joseph Heled, Graham Jones, Denise Kühnert, Nicola De Maio, Michael Matschiner, Fábio K. Mendes, Nicola F. Müller, Huw A. Ogilvie, Louis du Plessis, Alex Popinga, Andrew Rambaut, David Rasmussen, Igor Siveroni, Marc A. Suchard, Chieh-Hsi Wu, Dong Xie, Chi Zhang, Tanja Stadler, Alexei J. Drummond BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS computational biology 15, no. 4 (2019): e1006650.

doi:10.1371/journal.pcbi.1006650

Inputs:

useThreads, minThreads, maxThreads, switchCount, reconfigCount, stopAfterSamerResults, includeMPTL, includeSPTL, chainLength, state, init, storeEvery, preBurnin, numInitializationAttempts, distribution, operator, logger, sampleFromPrior, operatorschedule

 

useThreads
type: java.lang.Boolean
calculated the distributions in parallel using threads (default true)-- only used if no SelfTuningCompoundDistribution specified.
Optional input. Default: true

 

minThreads
type: java.lang.Integer
minimum number of threads to use (default 1)-- only used if no SelfTuningCompoundDistribution specified.
Optional input. Default: 1

 

maxThreads
type: java.lang.Integer
maximum number of threads to use, if less than 1 the number of threads in BeastMCMC is used (default -1)-- only used if no SelfTuningCompoundDistribution specified.
Optional input. Default: -1

 

switchCount
type: java.lang.Long
number of milli seconds to calculate likelihood before switching configuration-- only used if no SelfTuningCompoundDistribution specified.
Optional input

 

reconfigCount
type: java.lang.Long
number of times to calculate likelihood before self tuning again-- only used if no SelfTuningCompoundDistribution specified.
Optional input

 

stopAfterSamerResults
type: java.lang.Integer
number of times the same configuration is optimal in a row before stopping to tune-- only used if no SelfTuningCompoundDistribution specified.
Optional input. Default: 3

 

includeMPTL
type: java.lang.Boolean
include multi-partition (BEAGLE 3) tree likelihood in configurations-- only used if no SelfTuningCompoundDistribution specified.
Optional input. Default: true

 

includeSPTL
type: java.lang.Boolean
include single-partition (BEAGLE 2) tree likelihood in configurations-- only used if no SelfTuningCompoundDistribution specified.
Optional input. Default: true

 

chainLength
type: java.lang.Long
Length of the MCMC chain i.e. number of samples taken in main loop
Required input

 

state
type: beast.base.inference.State
elements of the state space
Optional input

 

init
type: beast.base.inference.StateNodeInitialiser***
one or more state node initilisers used for determining the start state of the chain
Optional input

 

storeEvery
type: java.lang.Integer
store the state to disk every X number of samples so that we can resume computation later on if the process failed half-way.
Optional input. Default: -1

 

preBurnin
type: java.lang.Integer
Number of burn in samples taken before entering the main loop
Optional input. Default: 0

 

numInitializationAttempts
type: java.lang.Integer
Number of initialization attempts before failing (default=10)
Optional input. Default: 10

 

distribution
type: beast.base.inference.Distribution
probability distribution to sample over (e.g. a posterior)
Required input

 

operator
type: beast.base.inference.Operator***
operator for generating proposals in MCMC state space
Optional input

 

logger
type: beast.base.inference.Logger***
loggers for reporting progress of MCMC chain
Required input

 

sampleFromPrior
type: java.lang.Boolean
whether to ignore the likelihood when sampling (default false). The distribution with id 'likelihood' in the posterior input will be ignored when this flag is set.
Optional input. Default: false

 

operatorschedule
type: beast.base.inference.OperatorSchedule
specify operator selection and optimisation schedule
Required input