BEAST v2.7.8 Documentation: beastlabs.inference.MCMCMC

Entry point for running a Beast task, for instance an MCMC or other probabilistic analysis, a simulation, etc.
MCMC chain. This is the main element that controls which posterior to calculate, how long to run the chain and all other properties, which operators to apply on the state space and where to log results.
Metropolis-Coupled Markov Chain Monte CarloNote that log file names should have $(seed) in their name so that the first chain uses the actual seed in the file name and all subsequent chains add one to it.Furthermore, the log and tree log should have the same sample frequency.

Reference:

Altekar G, Dwarkadas S, Huelsenbeck J and Ronquist F (2004). Parallel Metropolis Coupled Markov Chain Monte Carlo For Bayesian Phylogenetic Inference. Bioinformatics, 20(3), 407-415.

doi:10.1093/bioinformatics/btg427

Inputs:

chains, resampleEvery, heatedMCMCClass, tempDir, chainLength, state, init, storeEvery, preBurnin, numInitializationAttempts, distribution, operator, logger, sampleFromPrior, operatorschedule

 

chains
type: java.lang.Integer
number of chains to run in parallel (default 2)
Optional input. Default: 2

 

resampleEvery
type: java.lang.Integer
number of samples in between resampling (and possibly swappping) states
Optional input. Default: 1000

 

heatedMCMCClass
type: java.lang.String
Name of the class used for heated chains
Optional input. Default: beastlabs.inference.HeatedMCMC

 

tempDir
type: java.lang.String
directory where temporary files are written
Optional input. Default: /tmp/

 

chainLength
type: java.lang.Long
Length of the MCMC chain i.e. number of samples taken in main loop
Required input

 

state
type: beast.base.inference.State
elements of the state space
Optional input

 

init
type: beast.base.inference.StateNodeInitialiser***
one or more state node initilisers used for determining the start state of the chain
Optional input

 

storeEvery
type: java.lang.Integer
store the state to disk every X number of samples so that we can resume computation later on if the process failed half-way.
Optional input. Default: -1

 

preBurnin
type: java.lang.Integer
Number of burn in samples taken before entering the main loop
Optional input. Default: 0

 

numInitializationAttempts
type: java.lang.Integer
Number of initialization attempts before failing (default=10)
Optional input. Default: 10

 

distribution
type: beast.base.inference.Distribution
probability distribution to sample over (e.g. a posterior)
Required input

 

operator
type: beast.base.inference.Operator***
operator for generating proposals in MCMC state space
Optional input

 

logger
type: beast.base.inference.Logger***
loggers for reporting progress of MCMC chain
Required input

 

sampleFromPrior
type: java.lang.Boolean
whether to ignore the likelihood when sampling (default false). The distribution with id 'likelihood' in the posterior input will be ignored when this flag is set.
Optional input. Default: false

 

operatorschedule
type: beast.base.inference.OperatorSchedule
specify operator selection and optimisation schedule
Required input